

Resurfacing and Overlay Made Easy with New Overlay Tools in Roadway Designer

Lisa Whitson, Transportation and Local Infrastructure Professional Services, Bentley Systems USA

Why Overlay?

Why Overlay?

- Accommodate wedging / leveling
- Milling
- Widening
- Crown correction
- Longitudinal smoothing
- Superelevation correction
- Cost minimization

What To Expect...

- Optimized vertical alignment without the "washboard effect".
- Leveling / stripping components
- Corrected superelevation
- Distinct volumes to minimize construction cost
- Several tolerance settings for overlay design

Why New Tools?

• A majority of all roadway construction projects today require overlay and or widening (rehabilitation) versus new construction.

• Machine control construction becoming the "norm" even with rehabilitation projects.

• Need new tools in Roadway Designer to better optimize quantities and follow specific standards like minimum overlay thickness or max. overlay depths.

- Need ability to optimize proposed profiles to lessen the "washboard effect".
- Need ability to "match what's out there" to minimize cost.

What Abilities Will These Tools Provide?

- Existing cross slope optimization with slope and elevation tolerances
- Minimum overlay thickness / maximum milling (scarification) depth analysis examining template points and optionally all ground points
- "Smooth" the vertical profile.
- Apply the adjusted profile.
- Crown correction / match existing milling
- Bituminous and Milling estimate of cost based on unit rates.

Introducing Roadway Designer's Overlay Toolset

Ben

Sustaining Infrastructure

Sustaining Infrastructur

Overlay Display Mode

A new Display Mode has been added to Roadway Designer

	Process All
	Process Visible Range
Display Mode:	🔘 Normal
	Superelevation
	💿 Overlay

In the "Overlay" Display Mode, the "Overlay Tools" drop down menu entry becomes active

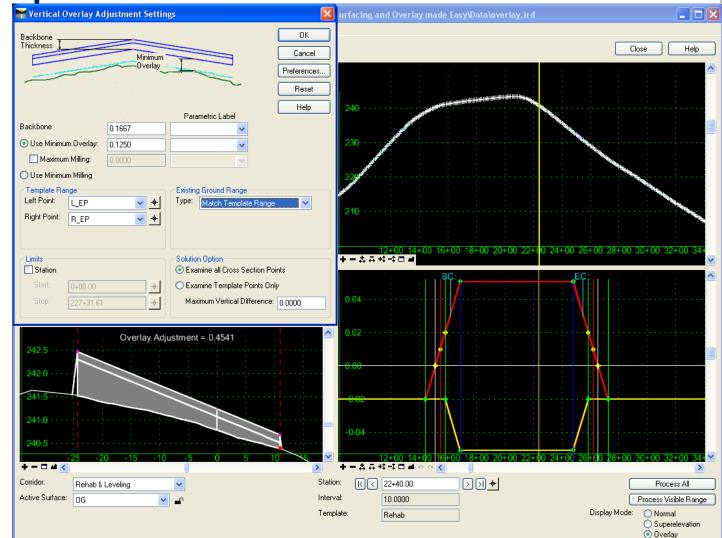
	🖬 Vertical Overlay Adjustment Settings 🛛 🛛 🔀
Roadway Designer - C:\Conference and Training Data\2009 RBC\EF File Corridor Superelevation Tools Overlay Tools Cross Slope Optimization Cross Slope Optimization Vertical Adjustment Settings Smooth Adjusted Vertical Alignment Apply Adjusted Vertical Alignment Cross Slope Optimization	Backbone Thickness Minimum Overlay Overlay Maximum Milling Parametric Label Backbone 0.1667 ♥ Use Minimum Overlay: 0.1250 ♥ arametric Label DK Cancel Preferences Help
Cross Slope Optimization	O Use Minimum Milling Template Range Left Point: Image Type: Match Template Range Image Solution Option Station
Control Line: Calced CL-R_EP Calculate Correction Reset Results Calculate Correction Reset Results Results: Station Station Ground Slope Delta S Ensure Delta S Ensure	Stati: 0+00.00 Stop: 227+31.61 Maximum Vetical Difference Maximum Vetical Difference Apply Adjusted Vertical Alignment to Corridor OK Style: P_ROAD_CenterLine Cancel Help Name: bottom Style: Default Top of Envelope Name: top Style: Default Top of Envelope Name: top Style: Default Style: Default<

New Component Type

A new component type \rightarrow Overlay / Stripping

Current Component			Add New Component 🔹 🕨	Simple
Name: Milling	Style:	Milling 🗸 🗸	Template Documentation Link	Constrained
Top option:	Follow Component		Check Point Connectivity	Unconstrained
	Tollow Component	Alternate Bottom Surface:	Delete Components	Null Point
Bottom option:	Follow Component 🛛 🔽	✓	Change Template Origin	End Condition
Component Depth:	3'1	Label: milling depth	Delete Constraints from All Points	Overlay/Stripping
Surface:	<active></active>	Stripping Component	Set Dynamic Origin Ctrl-D	
	ACTIVE?			4 6 8
Surface Depth:	0.0000	Label: 🗸 🗸		

Component Properties									
Name:	L_Leve	eling		+	Apply				
Use Name Override:	L_Leve	eling]	Close				
Description:					< Previous				
Style:	P_RO4	AD_BinderCol 🔽							
Parent Component:		+		Next >					
Display Rules:		,		Edit	Help				
Exclude From Triangu	lation								
Overlay/Stripping Prope	erties								
Top option:		Follow Component	🖌 🖌	ternate Bottom Sur	face:				
Bottom option:		Follow Surface	~		*				
Component Depth:		0.0000	La	abel:	~				
Surface:		<active></active>	~	Stripping Compor	nent				
Surface Depth:		0.0000	La	abel:	*				



2010 Bentley

Vertical Optimization with Superelevation correction

Designer
 first applies
 the required
 superelevation
 based on
 project
 standards.

Optimize the vertical profile utilizing the design superelevation

Cross Slope Optimization

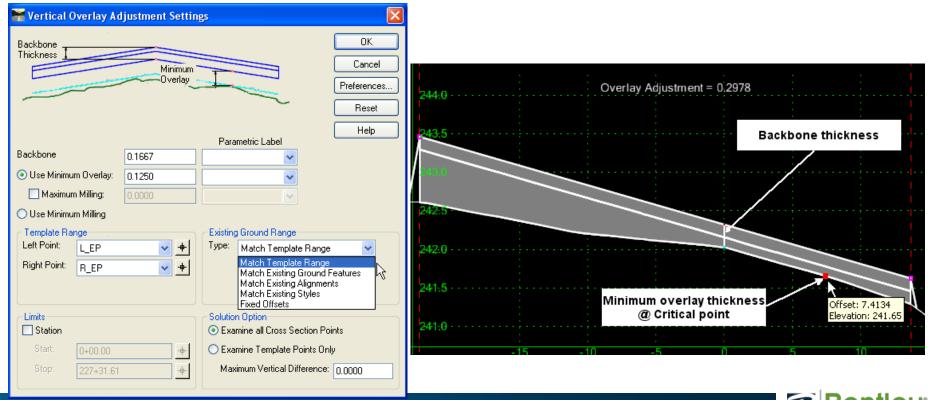
- Analyzes the existing cross slope and Delta G between sections.
- Takes into account theoretical design standard superelevation.
- Adjust the proposed cross slope based on user defined tolerances.
- Creates new point control lines.
- Allows for user interaction to manually adjust computed slopes.

Existing Ground (Optimizatio	n Parameters			ose
Existing Type:			💿 Slope T	Slope Tolerance: 0.500%		Prefer	ences
Pivot Feature: CL 🖌 🖌		🕈 🔵 Elevatio	n Tolerance:	0.00			
Superelevated Fe	eature: LEP	~	+ Maximum D	esirable Delta G:	0.8000		elp
-Design Cross Slo	pe Definition		Limits				cib
Design Type:		rol Line 🔽	Station	n			
Control Line:	Cool	ion1 CL-L_EP 🔽	Star		0+00.00	+	
	Sec		Stop			Ψ	
Calculate Correct	tion Rese	t Results	Stop		227+31.61	<u>+</u>	
Results:							
Station	Ground Slope	Design Slope	Difference	Corrected Slo	pe Delta Elevation	Delta G	^
74+80.00	-3.456%	-2.000%	1.456%	-2.956%	0.0599	0.2755	
74+90.00	-3.570%	-2.000%	1.570%	-3.070%	0.0598	0.2765	
75+00.00	-3.685%	-2.000%	1.685%	-3.185%	0.0597	0.2776	
75+10.00	-3.741%	-2.000%	1.741%	-3.241%	0.0596	0.1375	
75+20.00	-3.795%	-2.000%	1.795%	-3.295%	0.0596	0.1306	
75+30.00	-3.849%	-2.000%	1.849%	-3.349%	0.0595	0.1308	
75+40.00	-3.903%	-2.000%	1.903%	-3.403%	0.0595	0.1310	
75+50.00	-3.957%	-2.000%	1.957%	-3.457%	0.0594	0.1312	
75+60.00	-4.012%	-2.000%	2.012%	-3.512%	0.0594	0.1314	~
75,70,00	4.000%	2 000%	0.000%	0 500%	0.0500	0.1010	>
Adjusted Cross Slo - New Control Line Section Name: Control Line Nam	LEP	→ Largest d	Create		Delta G E		

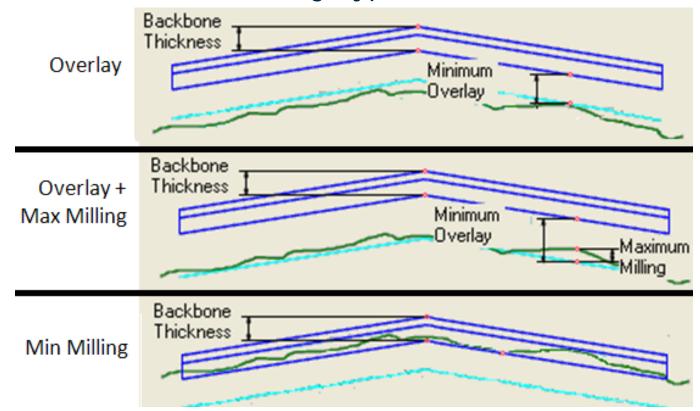
Cross Slope Optimization Report

Cross Slope Optimization Station Report

Report Created: 4/29/2009 Time: 9:46am


Corridor:	Overlay Sample	
File Name:	C:\NCDOT Overlay\Overlay Sa	ample.ird
Input Grid Factor:	1.000000	Note: All units in this report are in feet unless specified otherwise.
Existing Ground Data:	Type: Alignment	
	Pivot: L	
	Superelevated: It_ex_eop	
Design Data:	Type: Control Line	
	Control Line: Section1 CL-EEOP_L	
Optimization Parameters:	Tolerance Type: Slope	
	Slope Tolerance: 2.00%	

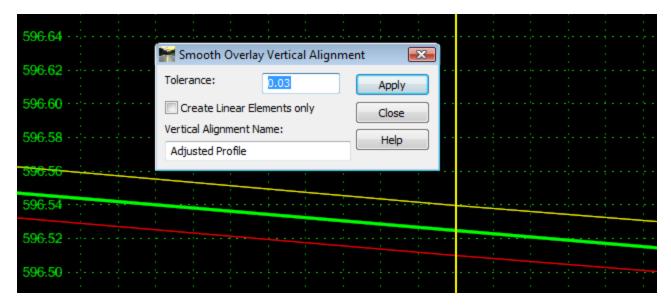
Station	Existing Slope/Elevation	Design Slope/Elevation	Difference Slope/Elevation	Corrected Slope/Elevation	Delta G	
20+20.00	0.18%	-1.95% -0.21	-2.13% -0.23	-1.82% -0.20	0.00	
20+30.00	-1.76% -0.19	-1.14% -0.13	0.62% 0.07	-1.14% -0.13	0.71	

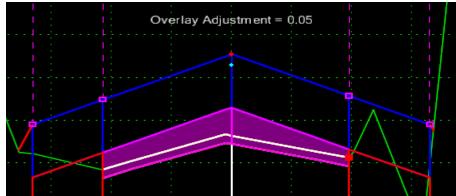

Vertical Overlay Adjustment

- Design via minimum overlay and optional maximum milling.
- Design via minimum milling
- Utilize Parametric Constraint labels to vary depths throughout a project
- Examine template points only or all points including existing ground
- Multiple choices when setting offset limits for analysis

Vertical Adjustments: 3 Scenarios

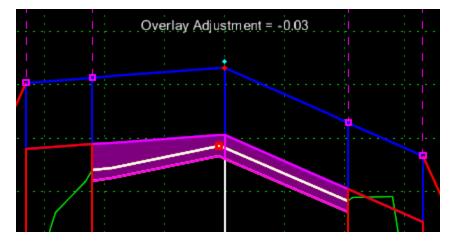
• Adjusts for three Resurfacing Types

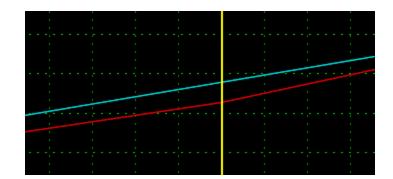




Vertical Overlay Adjustment

- Creates a vertical profile design window.
- Linear Regression is utilized to "best fit" the design profile.





Vertical Overlay Adjustment

- Applies adjusted profile automatically.
- Allows designer to store top and bottom envelope profile for manual tweaking.

🐂 Apply Ad	ljusted Vertical Alignment	—			
🔽 Apply Adj	usted Vertical Alignment to Corridor	ОК			
Style:	Style: Surface Cse. 1				
🔽 Create Ve	ertical Alignment for bottom of envelope	Help			
Name:	Top Envelope	<u> </u>			
Style:	Surface Cse. 1				
Create Ve	ertical Alignment for top of envelope				
Name:	Bottom Envelope				
Style:	Surface Cse. 1				

Corrected Superelevation

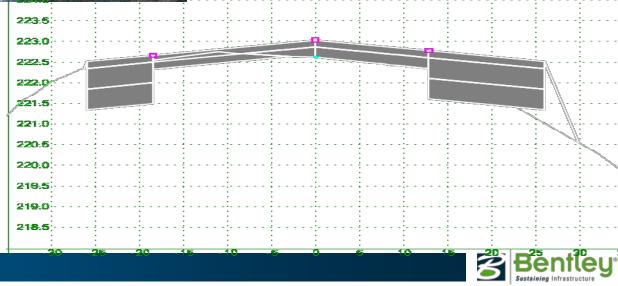
• Combine Optimized Vertical with Theoretical Superelevation

ĺ	🐂 Superelevatio	n Control Cur	ve Set Station	Edit			
	Section Name:	Section1				-	ſ
	Curve Set:	< < 2	K<	Show Curv	ve Set Informa	ation	
	Туре	Constrained	Station	Cross Slope	Length	Grade	+
	Normal Crown		93+96.96	-2.000%		2.385%	• ī
	Super Runoff		94+50.14	-0.000%	53.18	1.308%	
	Reverse Crown	\square	95+03.32	2.000%	53.18	0.666%	
	Full Super		95+67.14	4.400%	63.82	0.666%	
	Full Super		104+06.81	4.400%	839.67	-3.374%	
	Reverse Crown	\square	104+70.63	2.000%	63.82	-3.374%	
	Super Runoff	\square	105+23.81	-0.000%	53.18	-3.007%	
· · · § · · · · § · · · · · · · · · · ·	Normal Crown		105+76.99	-2.000%	53.18	-3.007%	
	•					4	- +
· · · · · · · · · · · · · · · · · · ·						,	(±
	— ∔ ∔ —						
		1.1					
land in the internet of the second							
an de la <u>de la completa de la comp</u> leta de la completa de							
		1.1					
· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·	••••						
		1	1 C				

X

Apply Undo Close Help

End Area Quantities / Material Cost


- User definable Unit Cost
- Computes end areas and volumes of each component
- Streamlines the design / cost analysis

		Roadwa	y Desi	gner - C:\C	Conference and Trai	ining Data\2009 R	BC/Eb and to Contract The Section Section 2010 Contract The Section 20
	Fil	e Corrido	r Supe	erelevation	Tools Overlay Tools		
		12+00 <u>;</u> +	-<		Target Aliasing		
		• × ····			Parametric Constraints	s	1 tool
			\		Curve Widening		
					Vertical Gore Tool Approximate Compone	ent Quantities	
						2	
					Plot Cross Sections		
					Design Input Report (i Results Report	ra riie)	
🚟 Approxima	te Compone	nt Quan	tities				
Material	Surface Area	Volume	Units	Unit Cost	Total Cost/Material	Close	
P_ROAD_Wearin		28051.9		1.20	33662.34	Liose	
Leveling		39542.5		1.90	75130.75	Help	
Milling		6561.7	CF	0.85	5577.41		
P_ROAD_Fill	5948.8		SF	0.50	2974.39		
		To	ıtal Estin	nated Cost:	117344.89		
			<u> </u>				
				Over	lay Adjustment = 0.3	3568	<u> </u>
		240.5 · ·					• • • •
		240.0 · ·					
		240.0					
			-				
		239.5 · ·					
						\sim	

Live Demonstration

Questions?

