TDV GmbH - AUSTRIA

Bridge Engineering Software RM 2006

Efficient – Innovative – Solution oriented

Professional Engineering Software since 1970 Programming – Consulting – Calculation Center

BE London 2007

Bridge engineering software

RM 2006

Efficient – Innovative – Solution oriented

Bridge Engineering Software

Reinforced and pre-stressed concrete

- Steel, concrete and composite
- Continuous beam, grillage, box girder
 - Cable-stayed bridges
- Suspension bridges

RM2006 GENERAL CONCEPT : one tool for all !

- Span-by-span
 - Advanced shoring
 - Incremental launching
 - Balanced cantilever bridges
 - Precast segmental

Any Type of Analysis

Any non linear and dynamic problem

- Stage by stage simulation
- Linear dynamics.
- Non-linear final stage.
- Non linear stage by stage simulation.
- Non linear material behaviour.
 - Non-linear dynamics.

RM2006 GENERAL CONCEPT : one tool for all !

Bridge Engineering Software

Efficient – Innovative – Solution oriented

2006

- P-delta consideration (2nd order).
- Cable sagging.
- 3rd order (large displacements).
- Non linear time history.
- Cracked concrete.

Bridge engineering software

Bridge Engineering Software

2006

Efficient - Innovative - Solution oriented

Modular structure of RM

Bridge Engineering Software REM 2006

BASIC module

- ➔ Pre-processor GP
- → Basic RM for 4D structural analysis
- → Powerful TCL file operation

CONCRETE module

- Reinforced concrete design (CODE dependent – also user defined material work diagrams!!)
- Pre-stressed and Post-Tensioned concrete including ALL CODE dependent CHECKS!!
- COMPOSITE Structures (UP to 8 optional parts) including ALL CODE dependent CHECKS!!

Modular structure of RM

Bridge Engineering Software

2006

Efficient - Innovative - Solution oriented

Professional Software Overview

- P-Delta Effect, Eigen-values (Stability, Buckling, Failure)
- Large deflections (Suspension bridges, large cable structures)
- Cable elements (full implementation of non-linear effects of cable sag)
- → Non- linear Material, Cracked Concrete
- Non-Linear Springs and Friction Elements

Modular structure of RM

Bridge Engineering Software RM 2006

Efficient - Innovative - Solution oriented

- Eigen-values (Masses, Eigen modes)
- Response spectrum result: DESIGN forces and TRUE coexistence forces in superposition files)
- Other modal analysis (f.ex. Excitation spectrum)
- Non- linear TIME HISTORY (static load with load/unload history, moving load, moving mass, HSR) including ALL NON-LINEAR EFFECTS!

→ WIND – ONLY in RM2006!

→ CFD module – ONLY in RM2006!

WIND in RM2006

Bridge Engineering Software

RM 2006

Efficient – Innovative – Solution oriented

- The bridge will respond to the action of wind
- Types of response depend on the wind speed and turbulence characteristics of oncoming flow

CFD in RM2006

Bridge Engineering Software

RM 2006

Efficient – Innovative – Solution oriented

Individual CFD calculation

- 1. Enter direction and velocity of wind
- 2. Suggest set of parameters
- **3.** Modify parameters
- Time step
- Number of iterations
- Number of panels
- Core size
- 4. Run calculation

Ę

Professional Software Overview

Efficient – Innovative – Solution oriented

BE London 2007

Example: Stonecutters Bridge, Hong Kong

- Shear deformations important
- Shortening compensation
- P-Delta effects and Large Displacements
- Cables sagging
- Time effects coupled with other non-linear effects
- Full calculation has to be done non-linear
- Special care is needed for stochastic wind events

COUPLED NON-LINEAR EFFECTS

Stonecutters Bridge Hong Kong

RM 2006

Bridge Engineering Software

Efficient – Innovative – Solution oriented

Stonecutters Bridge Hong Kong

Structural model in RM2006

Stonecutters Bridge Hong Kong

Bridge Engineering Software

RM 2006

Efficient – Innovative – Solution oriented

Eigen-mode 1 and 2

Plan View - Eigen Mode 1

Advanced bridge design – Optimisation of tensioning sequence

Bridge Engineering Software REM 2006 Efficient – Innovative – Solution oriented

Advanced bridge design – Rolling Stock Analysis

RM 2006

Bridge Engineering Software

Efficient - Innovative - Solution oriented

Advanced bridge design – Rolling Stock Analysis

Efficient – Innovative – Solution oriented

Bridge Engineering Software

2006

Professional Software Overview

ACCURATE RESULTS HSR

Bridge Engineering Software RM 2006

Efficient – Innovative – Solution oriented

Example: High Speed Rail Taiwan

Bridge Engineering Software

Efficient - Innovative - Solution oriented

- Taiwan has 20.7 Million Inhabitants
- HSR from Taipei to Kaoshiung
- Total length of 354 km
 → 242 km Bridges
- Total Construction Costs
 U\$ 13.1 Milliard
- Handing Over 2005

Advanced bridge design – Camber and erection control

Professional Software Overview

With camber calculation functions implemented in RM2006 the user gets very easily all the information for the check on site in a compact excel sheet

Erection control can be used for design and later for checking or correcting the fabrication shapes in the erection sequence

International projects Cable Stayed Bridges

Bridge Engineering Software REAL 2006

Professional Software Overview

The Sutong Bridge will be the world's largest Cable-Stayed Bridge with the main span of 1088m, overtaking the Stonecutters Bridge in Hong Kong. RM2006 Erection Control used for the project.

Design by HPDI, China

De TDV Know-How in international projects 2007 Segmental bridges

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

Woodrow Wilson Bridge Virginia-Washington DC-Maryland, USA

Parsons Transportation Group

Two Parallel Structures - 1850 m (6060 ft) Four Steel Box Girders with Composite PT Concrete Deck V-Shaped segmental concrete piers and Bascule construction

BE TDV Know-How in international projects Segmental bridges RM 2006

Efficient - Innovative - Solution oriented

Gateway Bridge, Brisbane, Australia

VSL-International, Bern, Switzerland

In Cooperation with

Professional Software Overview

Main Span 260 m (850 ft) - Pier Height 60 m (200 f) Balanced Cantilever Method

BE London 2007

TDV Know-How in international projects Segmental bridges

Bridge Engineering Software RM 2006

Efficient - Innovative - Solution oriented

Las Vegas Monorail Project Las Vegas, Nevada, USA In Cooperation with Carter & Burgess, Denver

Span Length to 37 m (120 ft) Straddle Bents to 34 m (110 ft) Total Length 4.3 km (2.7 miles)

De TDV Know-How in international projects Tied Arches

Efficient – Innovative – Solution oriented

Bridge Engineering Software

RM 2006

Lincoln Bridge Washington, USA

Main Span 104 m (340 ft)

Software Support for JMI International, San Diego, USA

De TDV Know-How in international projects 2007 Tied Arche-Cable Stayed

RM 2006

Efficient – Innovative – Solution oriented

Youngjong Bridge South Korea

In Assosiation with **BTC/Seoul**

Steel Box Girder with Tied Arch Total Length 135 m (444 ft)

BE London TDV Know-How in international projects 2007 Suspension bridges

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

Höga Kusten Bridge, Sweden

Provided analysis for Check to Leonhardt & Andrä, Germany

Main Span 1200 m (3940 ft)

De TDV Know-How in international projects 2007 Suspension bridges

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

The Hardangerbridge will be the longest suspension bridge in Norway. The sailing height under the bridge will be 55 m.

Longest suspension bridge in Norway – 1310 m main span, total length 1380 m

TDV software in use:

- The bridge planning will be performed by the Norwegian public road administration department of bridges, with support from private bridge consultants.
- TDV software will be use for bridge planning
- TDV and TDA will give technical support in calculation work

Description of the second seco

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

San Francisco – Oakland – Bay Bridge, California

In Association with SOHA, Anatech, PTG, T.Y.Lin

Proposal to Caltrans:

 $\stackrel{\scriptstyle \scriptstyle \times}{\scriptstyle}$

West span bike path planning and feasibility study over the existing San Francisco – Oakland – Bay Bridge (length=3141m=10305ft)

Description of the second seco

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

Brooklyn Bridge New York City, New York

In Association with Parsons Transportation Group

Proposal to New York City DoT:

Check the seismic behavior of the mixed suspension and cable stay structure (length=1055m=3460ft).

London TDV Know-How in international projects **Cable Stayed Bridges** Efficient - Innovative - Solution oriented

Kap Shui Mun, Hong Kong

Software Support for Leonhardt & Andrä, Germany

URS Greiner, Tampa, USA

Live Load Analysis for Multi Deck Top Vehicle / Bottom Vehicle and Train Main Span 430 m (1410 ft)

Bridge Engineering Software

RM 2006

BE London TDV Know-How in international projects 2007 Cable Stayed Bridges

Professional Software Overview

Efficient - Innovative - Solution oriented

Bridge Engineering Software

RM 2006

BE London TDV Know-How in international projects 2007 Cable Stayed Bridges

RM 2006

Bridge Engineering Software

Efficient – Innovative – Solution oriented

Kao Ping Hsi Bridge Kaohsuing, Taiwan Detail Design for FFF 3F Engineering, UK

TDV till today

WHY CHOOSING RM2006?

- **TDV** was **NEVER ONLY SOFTWARE** development house!
- Professional bridge engineering software, <u>developed BY</u> <u>Engineers FOR Engineers!</u>
- Compensation of <u>37 years TECHNICAL KNOW-HOW</u>!
- Technical solutions for all special problems in the world of bridges!
- Technical support and consulting for TDV users worldwide within 24 hours!
- Excellent hand in hand collaboration with users projects and development.

TDV till today

WHICH BENEFITS BY CHOOSING RM2006?

- TDV GUARANTEES for high sophisticated technical level of Software and Support.
- TDV GUARANTEES for validity of results!
- <u>TDV QUALITY GUARANTEED</u> by THOUSANDS of successful bridge projects worldwide.
- <u>TDV QUALITY GUARANTED</u> by the longest and the most complicated bridges in the world – already built and in the build process (Stone Cutter, Sutong, Bay Bridge)

ACKNOWLEDGEMENT

Bridge Engineering Software

C RM 2006

Efficient – Innovative – Solution oriented

Thank you for your attention