# The Year in **INFRASTRUCTURE** 2019 Conference

Bentley Institute

Advancing BIM through Digital Twins

October 21 – 24,2019 | Marina Bay Sands | Singapore | #YII2019

Master the Art of Complex and Challenging Reality Data Acquisitions

Bentley Institute

Arnaud Durante, Product Manager, iTwin Services - Reality Modeling

**ContextCapture** 



### **ContextCapture technology and input data**



- ContextCapture technology is **robust** when data acquisition is **thorough**.
- Complex sites increase the risk of failure as data acquisition automation and systemization is difficult.
- Mitigate risks with correct project management.



#### **Stage 1: Mission planning**

- Is the site accessible?
- What are its rough dimensions?
- What is my exact area of interest?
- What would be the right camera choice?









Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO .

#### Google Earth

#### **Stage 1: Mission planning**

- Site will be accessible from north and free of vehicles
- The site is around 1200sqm and the central part is key
- An estimation of 500-800 images will be required to achieve the mission
- Structure seems high but we should not face backspace issues





#### **Stage 2: On-site review**

- First global site visit
- Define exact capture path
- Identify potential difficulties
- Determine exact ground control points or scale constraints position
- Camera settings testing







#### **Field notes**

# Locate a clear starting point





#### **Stage 3: Imagery capture**

- Follow main capture path and close the loop
- Check primary capture is robust and with no breaks. Images displayed at speed will appear like a movie.
- Focus on key areas: in this instance, the under-part of the bridge







#### **Stage 3: Imagery capture**

- Before leaving the site, validate the checklist:
  - Main capture path is robust
  - Focus areas are good and linked to main capture path
  - All geo-registration and measurement information has been collected
  - Do not forget any materials on-site
- Basic principle reminder:
  Going back on-site is expensive If in doubt, capture additional pictures





#### **Stage 4: Processing**

- Copy images to your workstation
- Import images and calibration report
- Define optional positioning constraints: GCPs, scale, etc.
- Submit aerotriangulation to ContextCapture desktop or ContextCapture Cloud Processing Service







#### **Stage 5: Mission closure**

- Review time spent on:
  - Capture
  - Automatic processing
  - Manual processing
- The importance of planning and preparation stages will be clear
- Reviewing helps accurately define the time and associated costs for planning further missions

| Processing s             | Processing time         |        |  |
|--------------------------|-------------------------|--------|--|
| Capture                  | 1- Planification        | 30min  |  |
|                          | 2- Global tour          | 10min  |  |
|                          | 3- Image shooting       | 60min  |  |
| Processing               | 1- Manual processing    | 5min   |  |
|                          | 2- Automatic processing | 240min |  |
| Summary Project analysis |                         | 20min  |  |
|                          | 6h05min                 |        |  |

©2019 Bentley Systems, Incorporate

#### Well managed capture

| Processing               | Processing time         |        |  |
|--------------------------|-------------------------|--------|--|
| Capture                  | 1- Planification        | 30min  |  |
|                          | 2- Global tour          | 10min  |  |
|                          | 3- Image shooting       | 60min  |  |
| Processing               | 1- Manual processing    | 5min   |  |
|                          | 2- Automatic processing | 240min |  |
| Summary Project analysis |                         | 20min  |  |
|                          | 6h05min                 |        |  |

#### Poorly managed capture

| Omin<br>Omin |
|--------------|
| Omin         |
|              |
| 40min        |
| 60min        |
| 480min       |
| 20min        |
| 10h00min     |

©2019 Bentley Systems, Incorporated

#### **Mission purpose**

- Produce a reality mesh of Microsoft Redmond site
- Expected accuracy
  - Global site: <5cm
- Merge reality mesh with existing lower resolution mesh (larger extents)
- Drone and GCPs approach will be the best choice







# Stage 1: Mission planning from the office

- Define area of take-off and landing and obtain flight clearances
- Identify access to site
- Define drone flight path and GCPs positions for the global area
  - Choose the hardware
  - Define flight height considering <5cm accuracy expectation





#### **Stage 2: On-site review**

- Check planned take-off and landing sites
- Check for potential obstacles that could not be foreseen prior to capture
- Set and survey targets for ground control points





#### **Stage 3: Imagery capture**

- Execute vertical and oblique predefined flight plan
- Fly at constant height
- Avoid flying over the highway







#### **Stage 4: Processing**

- Copy your images to your workstation
- Import images and ground control points
- Register GCPs
- Submit aerotriangulation to ContextCapture or ContextCapture Cloud Processing Service





#### **Stage 5: Mission closure**

- Review time spent on:
  - Capture
  - Automatic processing
  - Manual processing
- The importance of planning and preparation stages will be clear
- Reviewing helps accurately define the time and associated costs for planning further missions

| Processing s             | Processing time         |                |  |
|--------------------------|-------------------------|----------------|--|
|                          | 1- Planification        | 1h             |  |
| Capture                  | 2- On-site checking     | 10min          |  |
|                          | 3- Image shooting       | 8h00min        |  |
| Processing               | 1- Manual processing    | 45min          |  |
|                          | 2- Automatic processing | 20days 0h 0min |  |
| Summary Project analysis |                         | 20min          |  |
|                          | 20d 10h 15min           |                |  |



#### Well managed capture

| Processing s             | Processing time         |             |  |
|--------------------------|-------------------------|-------------|--|
|                          | 1- Planification        | 1h          |  |
| Capture                  | 2- On-site checking     | 10min       |  |
|                          | 3- Image shooting       | 8h00min     |  |
| Processing               | 1- Manual processing    | 45min       |  |
|                          | 2- Automatic processing | 20d 0h 0min |  |
| Summary Project analysis |                         | 20min       |  |
|                          | 20d 10h 15min           |             |  |

#### Poorly managed capture

| Processing time |  |
|-----------------|--|
| 0min            |  |
| 0min            |  |
| 6h 00min        |  |
| 20h 00min       |  |
| 30d 0h 0min     |  |
| 20min           |  |
| 31d 2h 20min    |  |
|                 |  |

©2019 Bentley Systems, Incorporated

#### **Mission purpose**

- Get a reality mesh of Cambridge university campus
- Expected accuracy
  - Global site: 2cm
  - Point of interest: <5mm</li>
- Point of interest is a single building requiring indoors & outdoors imagery
- Full hybrid combination will be the best approach







Image Landsat / Copernicus Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image IBCAO

#### Google Earth

#### Stage 1: Mission planning from the office

- Define area of take-off and landing and obtain flight clearances
- Identify access to main site and building of interest
- Define drone flight path and GCPs positions for the global area
  - Choose the hardware
  - Define flight height considering 2cm accuracy expectation
- Estimate time and resources required, both
  personnel and equipment





| Site             | Description                       | Value                            |  |
|------------------|-----------------------------------|----------------------------------|--|
|                  | Area                              | 556.000sqm                       |  |
|                  | Expected accuracy                 | 2cm                              |  |
|                  | Flight plan                       | Oblique + Nadir Grid             |  |
|                  | Number of pictures                | 1400                             |  |
| <u>Main site</u> | Estimated capture time            | 2h                               |  |
|                  |                                   | 2 operators                      |  |
|                  | Equipment 9 staff                 | 1 Sirius Drone                   |  |
|                  | Equipment & stan                  | 1 camera                         |  |
|                  |                                   | 1 Total station                  |  |
| Focus building   | Area                              | 5.300sqm                         |  |
|                  | Expected accuracy                 | <0.5cm                           |  |
|                  | Number of pictures (outdoor)      | 2000                             |  |
|                  | Number of scan stations (outdoor) | 6                                |  |
|                  | Estimated contura time            | Outdoor: 4h                      |  |
|                  | Estimated capture time            | Indoor (rough at this stage): 4h |  |
|                  |                                   | 2 operators                      |  |
|                  | Equipment and staff               | 1 Laserscan                      |  |
|                  |                                   | 1 camera                         |  |

#### <u>Stage 2: On-site review – Global</u> <u>capture</u>

- Check planned take-off and landing sites
- Check for potential obstacles that could not be foreseen prior to capture
- Set targets for ground control points





<u>Stage 2: On-site review – Building</u> <u>image capture - Outdoors</u>

- First building site visit
- Define exact capture path
- Identify potential difficulties
- Camera settings testing





#### <u>Stage 2: On-site review – Building</u> image capture - Indoors

- First indoor site visit
- Define exact capture path
- Identify potential difficulties
  - Shiny surfaces
  - Angles
  - Entrances





#### <u>Stage 2: On-site review – Building</u> <u>Iaserscan capture - Indoors</u>

- Define scanner positions to cover the entire area
- Make sure laserscanning activity will not interfere with imagery capture





#### <u>Stage 3: Imagery capture –</u> <u>Global capture</u>

- Execute pre-defined flight plan
- Make sure to set GCPs before flying
- Fly at constant height





Stage 3: Imagery capture -Building image capture - Outdoors

- Follow main capture path and close the loop
- Check primary capture is robust and with no breaks. Images displayed at speed will appear like a movie
- In a 2<sup>nd</sup> time stitch areas of interest to main canvas





#### Stage 3: Imagery capture -Building image capture - Indoors

- Follow main capture path and close the loop
- To ensure automatic stitching with outdoors section, take extra care with the entrances
- Pay attention to light condition changes and how images shot in automatic mode can be affected





Stage 3: Imagery capture -Building image capture - Indoors

- Follow main capture path and close the loop
- To ensure automatic stitching with outdoors section, take extra care with the entrances
- Pay attention to light condition changes and how images shot in automatic mode can be affected





#### Stage 3: Imagery capture - Building laserscan capture - Indoors

- Set-up laserscan on pre-defined positions during initial tour
- Run acquisition





#### **Stage 4: Processing**

- Import laserscan
- Import and align drone images on GCPs
- Align ground and indoor images and fit to pointcloud
- Run 3D reconstruction







#### **Stage 5: Mission closure**

- Review time spent on:
  - Capture
  - Automatic processing
  - Manual processing
- The importance of planning and preparation stages will be clear
- Reviewing helps accurately define the time and associated costs for planning further missions

| Processing S             | Processing time         |         |  |
|--------------------------|-------------------------|---------|--|
| Canturo                  | 1- Planification        | 1h      |  |
|                          | 2- Focus building tour  | 30min   |  |
|                          | 3- Image shooting       | 2h + 4h |  |
|                          | 4 – Laserscan shooting  | 4h      |  |
| Processing               | 1- Manual processing    | 1h      |  |
|                          | 2- Automatic processing | 6d 1h   |  |
| Summary Project analysis |                         | 20min   |  |
|                          | 6d 13h 50min            |         |  |

©2019 Bentley Systems, Incorporate

### Well managed capture

41

| Processing : | Processing time        |         |  |
|--------------|------------------------|---------|--|
| Capture      | 1- Planification       | 1h      |  |
|              | 2- Focus building tour | 30min   |  |
|              | 3- Image shooting      | 2h + 8h |  |
|              | 4 – Laserscan shooting | 4h      |  |
| Processing   | 1- Manual processing   | 1h      |  |
|              | 2-Automatic processing | 6d 1h   |  |
| Summary      | Project analysis       | 20min   |  |
|              | 6d 15h 50min           |         |  |

### Badly managed capture





- Only a robust capture will lead to a consistent reality mesh
- Time spent on mission planning and imagery capture is never wasted
- Time invested at mission planning, on-site review and capture stage can reduce processing time and related costs by 80%





|                                 | Stage                | Terrestrial - Good | Terrestrial - bad | Drone - Good | Drone - bad | Hybrid good | Hybrid bad |
|---------------------------------|----------------------|--------------------|-------------------|--------------|-------------|-------------|------------|
| Capture                         | Planification        | 0:30:00            | 0:00:00           | 1:00:00      | 0:00:00     | 1:00:00     | 0:00:00    |
|                                 | On-site review       | 0:10:00            | 0:00:00           | 0:10:00      | 0:00:00     | 0:30:00     | 0:00:00    |
|                                 | Image capture        | 1:00:00            | 0:40:00           | 8:00:00      | 6:00:00     | 10:00:00    | 8:00:00    |
|                                 | Laserscan shooting   | 0:00:00            | 0:00:00           | 0:00:00      | 0:00:00     | 4:00:00     | 2:00:00    |
| Processing                      | Manual processing    | 0:05:00            | 2:00:00           | 0:45:00      | 20:00:00    | 1:00:00     | 16:00:00   |
|                                 | Automatic processing | 4:00:00            | 8:00:00           | 420:00:00    | 720:00:00   | 145:00:00   | 267:00:00  |
| Project Review                  | Analysis             | 0:20:00            | 0:20:00           | 0:20:00      | 0:20:00     | 0:20:00     | 0:20:00    |
| TOTAL                           |                      | 6:05:00            | 11:00:00          | 430:15:00    | 746:20:00   | 161:50:00   | 293:20:00  |
| Capture                         |                      | 1:40:00            | 0:40:00           | 9:10:00      | 6:00:00     | 15:30:00    | 10:00:00   |
| Manual Processing               |                      | 0:05:00            | 2:00:00           | 0:45:00      | 20:00:00    | 1:00:00     | 16:00:00   |
| Automatic processing            |                      | 4:00:00            | 8:00:00           | 420:00:00    | 720:00:00   | 145:00:00   | 267:00:00  |
| Capture - Cost                  |                      | \$333.33           | \$133.33          | \$1,833.33   | \$1,200.00  | \$3,100.00  | \$2,000.00 |
| Manual Processing - Cost        |                      | \$16.67            | \$400.00          | \$150.00     | \$4,000.00  | \$200.00    | \$3,200.00 |
| Automatic processing - Cost     |                      | \$40.00            | \$80.00           | \$4,200.00   | \$7,200.00  | \$1,450.00  | \$2,670.00 |
| TOTAL COST                      |                      | \$390.00           | \$613.33          | \$6,183.33   | \$12,400.00 | \$4,750.00  | \$7,870.00 |
| 1h cost involving operator      | \$200.00             |                    |                   |              |             |             |            |
| 1h cost of automatic processing | \$10.00              |                    |                   |              |             | Y           |            |

1h cost of automatic processing



#### Reality modeling cost Terrestrial project







44 #YII2019

#### Reality modeling cost Drone project





#### Reality modeling cost Hybrid project





Bentley Institute

For more information, please visit: www.Bentley.com/ContextCapture

Visit the Reality Modeling team at the demo pod in the Technology Pavilion!

#### The Year in INFRASTRUCTURE 2019 Conference

## NEW IN 2019! DEMO PODS

VISIT THE TECHNOLOGY PAVILION AND EXPERIENCE BENTLEY APPLICATIONS FIRST HAND!

> Tuesday, October 22 07:30 - 16:00 / 18:30 - 21:00

Wednesday, October 23 07:30 - 08:45 / 10:30 - 17:30

Thursday, October 24 07:30 - 08:45/10:30 - 16:45

