

Introduction to Bentley Subsurface Utility Engineering (SUE) and StormCAD Ernst van Baar

Lecture Topics

- Introduction to SUE (NOW)
- Introduction to StormCAD in OpenRoads (Drainage Design) (LATER)
- Want a copy of presentations?
 - learn.bentley.com Bentley LEARN Server (Will also have recordings of all Lectures)
 - Bring a USB drive up front after the Lecture
 - Send an email to Ernst.Vanbaar@Bentley.com

Why 3D Utility Models?

3D Utility Models

- 2 3D modeling in transportation construction is a mature technology that serves as the building block for the modern-day digital jobsite. The technology allows for faster, more accurate and more efficient planning and construction.
- Every Day Counts 3 effort focuses on three practices: using the raw data from which the model is created for roadway inventory and asset management purposes, incorporating schedule (4D) and cost (5D) information into models, and using post-construction survey data to correct the design model and create an accurate as-built record drawing

Bentley Subsurface Utility Engineering

Subsurface Utility Design and Analysis (SUDA)

Subsurface Utility Engineering

StormCAD Hydraulic Analysis/Design Engine

Conflict
 Management

• SUE Attribution

3D Modeling of all underground
Integrated with OpenRoads Storm/Sanitary Hydraulic Analysis and Design
 Hydrology

SUE and StormCAD Licensing

lf yc	ou own this license	lt w dra	vill include these inage functions:	S	UE functionality
• Ar ind In	ny OpenRoads product which cludes GEOPAK Drainage, Roads S&S or MX Drainage	 S a M d S 	Storm water peak flow design and analysis /lax 100 Inlets in any single Irainage model Storm/Sanitary attributes	•	Utilities can be modeled in 3D No SUE attributes No Utility Conflict Tools
• Ar	 by of the above plus either: StormCAD Unlimited SewerCAD CivilStorm SewerGEMS 	• L c li	Jnlocks additional hydraulics alculations capabilities according to which enhanced cense is activated.	•	Utilities can be modeled in 3D No SUE attributes No Utility Conflict Tools
• Ai lic	ny of above plus SUE cense	• S a h	Same hydraulic capabilities as bove according to which hydraulics license is active.	•	Unlocks SUE attributes Unlocks Utility Conflict Tools

Note: Open Access Licensing in All the Above

Bentley

Existing Utilities From Survey

Model Existing Utilities From Survey

- Create 3D utility models, including drainage and wastewater features
 - Pipes, cables, ducts of all sorts
 - Virtually everything underground
- Elevations from the 3D survey features or from terrain.

Extract Utility From Graphics Command

- Modeled after the Terrain Model from Graphics command.
- Uses graphics from any source.
- Elevations from terrain model or from 3D element.
 - Terrain Model graphic is draped at specified depth
 - Element if the graphic is 3D then user has option of using the elevations of the graphic vertices plus optional vertical offset.
- Use selection set or pick during command prompts

Utility Filter Manager

New Utilit

Filter type si	milar to Ter	rain Filters	S.	
Du by Filter Manager				T
	Properties			
Water Lines 4			Finish	WWW BENTLEY COM 1

Existing Utilities From GIS

Create Models of Existing Utilities From GIS Data

- Model Builder tool provides two way link from virtually all database formats including:
 - Oracle Spatial
 - SQL Spatial (by way of Bentley Map)
 - ESRI spatial databases (requires ESRI Connector)
 - SHP
- Model Builder maps the tables and fields in the database with tables and fields in the CADD file.

Drainage Models From Legacy Sources

Build Models from Legacy Sources

Direct Import from:

- StormCAD, CivilStorm, SewerCAD SewerGEMS (.stsw)
- SWMM V5
- LandXML
- MicroDrainage
- GEOPAK Drainage
- InRoads S&S
- MX Drainage

 Using Model Builder link/import from virtually any data source including:

- Microsoft Excel
- Microsoft Access
- Text Files (.csv, .txt)
- ESRI (.shp)
- Bentley Map

11-3D 今 9 9 日 4 0 1 9 日 日 5 7 7 8

- - ×

Drainage Layout

Place Node and Place Link

- Place Node command allows creation of new nodes
- Place Link command creates conduits between nodes
- Feature Definition to describe presentation and function.

Curve Variat	oles 🔦
Pull	0.025
Segment Length	2.440
Slope Angle	0.00%
Feature	^
eature Definition Name Prefix	No Feature Definition
Description	No Descriptions Selecte -

Proposed Utilities

Design Non-Drainage Utilities for Extension or Relocation

- Physical Design Only for Pressure Conduits
 - No Hydraulic design for water, gas etc.
 - No analytics for comms, electrical, etc.
- Integrated with Openroads Horizontal and Vertical Geometry
- Design Trenches along with the conduit.
- Trenches can be used to define the soft clash envelope

Utility with Trench

- Common use cases:
 - Relocation of utilities.
 - Modeling of pipe trench for quantities.
 - Define a soft clash envelope
- Use selection or filter method

		। । । ।
1 <u>2</u> 	31'+41+51'+61	5 <u>7</u> +8
Comp	onents	ñ.,
a 📵 🗉	I 🥔 🗟 🍖	~ 3
w	<	7 🚟)
E Dia	ce Node	

S Extract Utilities From	Graphi 🗕 🖬 🗙	
Method	Selection	
Use 3D Element Elevations?		
Vertical Offset	-4.00	
Create Trench		
Design Stage	3 - Final	
Feature	^	
Feature Definition	Water Line Ductile Iron	
Name Prefix	WL-	

Trench Template in the Feature Definition

- Conduit Feature Definitions include a property for trench template.
- Which is an OpenRoads corridor design template

Ilement Information									
Ere Selection Water Line Ductile Iron									
Feature Definition									
Utility Type	Water								
Name Prefix	WL-								
Trench Template	Components\Trench\Utility Trench OSHA Type A Max 8								
Function	Main Line								
Network Type	Potable								
Conduit Type	Pressure Pipe								
Shape	Circle								
Shape Orientation	Soffit								
Conduit Table	<collection: 18="" items=""></collection:>								
Profile	*								
Plan	*								
Three D	*								

Conflict Detection

Conflict Detection

- Perform conflict detection using:
 - Feature Definitions for search criteria
 - Or use Levels for search criteria
 - Any 3D features whether utility features or road/bridge, or anything else
- Detected conflicts are marked with a 3D Conflict Node.
- Conflict Nodes are stored in database so they can be queried and reported.

Lecture Topics

- Introduction to SUE (JUST FINISHED)
- Introduction to StormCAD in OpenRoads (Drainage Design) (NOW)
- Want a copy of presentations?
 - learn.bentley.com Bentley LEARN Server (Will also have recordings of all Lectures)
 - Bring a USB drive up front after the Lecture
 - Send an email to alvie.griffith@bentley.com

Drainage Design

Subsurface Utility Design and Analysis (SUDA)

Subsurface Utility Engineering

StormCAD Hydraulic Analysis/Design Engine

Conflict
 Managemen

SUE Attribution

3D Modeling of all underground
Integrated with OpenRoads Storm/Sanitary Hydraulic Analysis and Design Hydrology

SUE and StormCAD Licensing

lf	you own this license	lt v dra	vill include these ainage functions:	S	UE functionality
•	Any OpenRoads product which includes GEOPAK Drainage, InRoads S&S or MX Drainage	• () • N • ()	Storm water peak flow design and analysis Max 100 Inlets in any single drainage model Storm/Sanitary attributes	•	Utilities can be modeled in 3D No SUE attributes No Utility Conflict Tools
•	 Any of the above plus either: StormCAD Unlimited SewerCAD CivilStorm SewerGEMS 	• (0 2	Unlocks additional hydraulics calculations capabilities according to which enhanced icense is activated.	•	Utilities can be modeled in 3D No SUE attributes No Utility Conflict Tools
•	Any of above plus SUE license	•	Same hydraulic capabilities as above according to which hydraulics license is active.	•	Unlocks SUE attributes Unlocks Utility Conflict Tools

Note: Open Access Licensing in All the Above

Bentley

Drainage Models From Legacy Sources

Build Hydraulic and 3D Models from Legacy Sources

- Direct Import from:
 - StormCAD, CivilStorm, SewerCAD SewerGEMS (.stsw)
 - SWMM V5
 - LandXML
 - MicroDrainage
 - GEOPAK Drainage
 - InRoads S&S
 - MX Drainage

- Using Model Builder link/import from:
 - Microsoft Excel
 - Microsoft Access _
 - Text Files (.csv, .txt)
 - ESRI (.shp)
 - **Bentley Map**

9 8 B 4 0 9 E E B 8 8 8

00

Best Practice

Bentleu

- Click any subsurface utility command before import to trigger creation of utility project and setting up of seed storms and etc.
- For commonly used nodes, make the feature definition name match the GEOPAK/InRoads library item name.
 - Thus the proper 3D model will be created on import
- For pipe feature definitions, make no attempt to match feature definitions.
 - If you do, you must maintain a Feature Definition for every pipe size
 - It is very easy after import to mass select and change all Feature Definition at once.
- Validate model and review any error reports

Best Practices

- Run Validate immediately after import to check for differences or incompatibilities between StormCAD and source data.
- Any errors found can be tidied up using the subsurface utility tools or properties.

🐂 Civil Message Ce	inter		X
Hide All 🕌 50 M	icroStation 🛛 😵 0 Errors 🚺 19 Warnin	ngs 💿 0 Messages	
Element	Message	Description	
1 SS-87	SS-87 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
SS-86	SS-86 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
SS-58	SS-58 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
SS-70	SS-70 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
SS-78	SS-78 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
SS-34	SS-34 - Message ID: 44036	Conduit does not meet minimum cover constraint.	
1 84	84 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
83	83 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
62	62 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
66	66 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
68	68 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
73	73 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
12	2 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
1	1 - Message ID: 44025	There is no gutter leaving this 'On Grade' catch basin. Bypassed flow is directed to the subnetwork outfall.	
48-47 Gutter	48-47 Gutter - Message ID: 44002	Slope (Calculated) should be greater than zero.	
1 60-62 Gutter	60-62 Gutter - Message ID: 44002	Slope (Calculated) should be greater than zero.	
1 29-28 Gutter	29-28 Gutter - Message ID: 44002	Slope (Calculated) should be greater than zero.	
1 48-47 Gutter	48-47 Gutter - Message ID: 44010	The catch basin ground elevation at the upstream end of this gutter is lower than the catch basin ground elevation at the downstream	end.
60-62 Gutter	60-62 Gutter - Message ID: 44010	The catch basin ground elevation at the upstream end of this gutter is lower than the catch basin ground elevation at the downstream	end.
1		ш	

Hydraulic Design Engines

Drainage Design and Analysis

- Industry standard analytics with more than 25 years maturity behind the hydraulic simulation engines
- Integrated with OpenRoads
- Conventional Peak Flow design plus advanced dynamic wave and transient analysis.
- Customizable and extensible
- Enterprise data exchange built-in

Storm/Sanitary Product Functions

- StormCAD Rational Method storm water design and analysis (HEC 22)
- SewerCAD Gradually varied flow sanitary sewer design and analysis package
- CivilStorm Storm water management and dynamic modeling
- SewerGEMS Complete storm and sanitary sewer modeling analysis and design package with geospatial integration. Superset of SewerCAD, CivilStorm and StormCAD.

Drainage Layout

Modeling Storm and Sanitary Networks

- Inlets, headwalls and catch basins ruled to OpenRoads geometry and surfaces.
- Pipes ruled to the nodes.
- Multi-pipe profile runs
- Hydraulic properties linked into feature definitions.

Best Practices - Layout

- If you don't know how to use Civil Accudraw, then learn. It will make your life easier and OpenRoads more powerful
- When connecting pipes to headwalls, remember that the direction determines whether the headwall is an inlet or an outlet.

Catchments

Validate Drainage Layout

rporated | 50

Peak Flow Design Calculations

Peak Flow Hydraulic Analysis/Design

- Included with OpenRoads drainage networks up to 100 inlets.
- StormCAD GVF calculations engine.
- 3D Model updates with design changes.
- Includes latest HEC-22 methods.

Scenario Manager

Scenario Manager

 Scenario Manager provides unlimited variation of design parameters with complete confidence that known good alternatives can be recalled at any time.

Laterals

Drainage Laterals

- Flows thru the terminal inlet are computed and inlet can be designed.
- Flows from inlet are passed thru lateral pipe but lateral pipe is not designed.
- Lateral connects to trunk line but does not split in two.
- All lateral flows are accumulated and applied at upstream end of trunk.

Configuration Variables

Configuration Variables

- SU_3D_Bends_Detail =
 - Low (default value) bends in the 3D models of conduits have a lower resolution, which provides better performance in larger datasets.
 - High bends in the 3D models of conduits are modeled to resemble fittings.
- SU_3D_Structure_ExtrudeMethod =
 - Up (default value) when making nodes the bottom cell is extruded upward using a slice from top
 of vault.
 - Down extrude a slice off the bottom of top cell downwards.
- SUDA_SEED_FILE = points to the dgnlib file which contains the hydraulic seed data
- SUDA_SEED_MODEL = the model within above seed which contains the hydraulic seed data

Configuration Variables common with OpenRoads

- CIVIL_CIVILTMDGNLIBLIST except in SUDA used to point to Utility Filters
- CIVIL_CONTENTMANAGEMENTDGNLIBLIST points to SUDA feature definitions
- MS_DGNLIBLIST points to element templates used in SUDA feature defitions.
- MS_CELL, MS_CELLLIST be sure to include the SUDA 3D cell libraries

Best Practices

- Include conduit and node feature definitions in the same DGNLIB
- Also, include hydraulic seed information in the same DGNLIB
- Element Templates in same or separate DGNLIB. Maintenance is easier if use same file.
- Utility Filters wherever you wish. Maintenance might be easier if use same DGNLIB as above.

More Information!

Alvie F. Griffith; PSM, P.E.

Senior Consultant, Bentley Systems Inc.

alvie.griffith@bentley.com

